
TCPIP

TCPIP ii

COLLABORATORS

TITLE :

TCPIP

ACTION NAME DATE SIGNATURE

WRITTEN BY July 10, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

TCPIP iii

Contents

1 TCPIP 1

1.1 TCPIP.guide . 1

1.2 TCPIP.guide/NODE_TEXTBOOK . 3

1.3 TCPIP.guide/NODE_GENERAL . 4

1.4 TCPIP.guide/NODE_CHONE . 5

1.5 TCPIP.guide/NODE_CHTWO . 7

1.6 TCPIP.guide/NODE_CHTHREE . 7

1.7 TCPIP.guide/NODE_CHFOUR . 8

1.8 TCPIP.guide/NODE_CHFIVE . 9

1.9 TCPIP.guide/NODE_CHSIX . 10

1.10 TCPIP.guide/NODE_CHSEVEN . 12

1.11 TCPIP.guide/NODE_CHEIGHT . 13

1.12 TCPIP.guide/NODE_CHNINE . 13

1.13 TCPIP.guide/NODE_CHTEN . 14

1.14 TCPIP.guide/NODE_CHELEVEN . 14

1.15 TCPIP.guide/NODE_CHTWELVE . 15

1.16 TCPIP.guide/NODE_CHTHIRTEEN . 16

1.17 TCPIP.guide/NODE_CHFIFTEEN . 16

1.18 TCPIP.guide/NODE_CHSIXTEEN . 16

1.19 TCPIP.guide/NODE_CHSEVENTEEN . 17

1.20 TCPIP.guide/NODE_CHEIGHTEEN . 17

1.21 TCPIP.guide/NODE_CHNINETEEN . 18

1.22 TCPIP.guide/NODE_CHTWENTY . 18

1.23 TCPIP.guide/NODE_CHTWENTYONE . 18

1.24 TCPIP.guide/NODE_CHTWENTYFOUR . 18

1.25 TCPIP.guide/NODE_CHTWENTYFIVE . 19

1.26 TCPIP.guide/NODE_CHTWENTYSIX . 19

1.27 TCPIP.guide/NODE_CHTWENTYSEVEN . 20

TCPIP 1 / 20

Chapter 1

TCPIP

1.1 TCPIP.guide

TCP/IP

This is an introduction to TCP/IP programming with Miami, and part of
the Miami Native Development Kit. The text is not a complete,
self-contained manual, but instead is an add-on to an existing TCP/IP
textbook for Unix. This documentation describes the differences between
Unix TCP/IP programming and TCP/IP programming for Miami, and gives the
Amiga TCP/IP programmer some additional hints.

This text assumes that the reader has access to the book "Unix
Network Programming. Networking APIs: Sockets and XTI", a very
up-to-date and excellent textbook on TCP/IP programming. For more
information on this book please see

Unix Network Programming
.

Textbook reference
Information on the reference text

General
General remarks and hints

Chapter 1
Chapter 1: Introduction

Chapter 2
Chapter 2: The Transport Layer: TCP and ←↩

UDP

Chapter 3
Chapter 3: Sockets Introduction

Chapter 4
Chapter 4: Elementary TCP Sockets

TCPIP 2 / 20

Chapter 5
Chapter 5: TCP Client-Server Example

Chapter 6
Chapter 6: I/O Multiplexing: The select ←↩

and poll Functions

Chapter 7
Chapter 7: Socket Options

Chapter 8
Chapter 8: Elementary UDP Sockets

Chapter 9
Chapter 9: Elementary Name and Address ←↩

Conversions

Chapter 10
Chapter 10: IPv4 and IPv6 Interoperability

Chapter 11
Chapter 11: Advanced Name and Address ←↩

Conversions

Chapter 12
Chapter 12: Daemon Processes and inetd ←↩

Superserver

Chapter 13
Chapter 13: Advanced I/O Functions

Chapter 15
Chapter 15: Nonblocking I/O

Chapter 16
Chapter 16: ioctl Operations

Chapter 17
Chapter 17: Routing Sockets

Chapter 18
Chapter 18: Broadcasting

Chapter 19
Chapter 19: Multicasting

Chapter 20
Chapter 20: Advanced UDP Sockets

Chapter 21
Chapter 21: Out-of-Band Data

Chapter 24
Chapter 24: IP Options

Chapter 25
Chapter 25: Raw Sockets

TCPIP 3 / 20

Chapter 26
Chapter 26: Datalink Access

Chapter 27
Chapter 27: Client-Server Design ←↩

Alternatives

Chapter 14 (Unix Domain Protocols), chapter 22 (Signal-Driven I/O),
chapter 23 (Threads) and chapters 28-34 (XTI: X/Open Transport
Interface) contain information that is not applicable to the current
AmigaOS BSD-Socket API.

1.2 TCPIP.guide/NODE_TEXTBOOK

Textbook reference

The textbook required to use this manual is:

Unix Network Programming
Networking APIs: Sockets and XTI
Volume 1, Second Edition

Author: W. Richard Stevens
Prentice Hall PTR, 1998
ISBN 0-13-490012-X

This book is the long-awaited new edition of the author’s very
popular earlier book ‘Unix Network Programming’. When you buy the book
be sure that you buy the new second edition (volume 1), NOT the older
book ‘Unix Network Programming’. That older book has by now become
rather obsolete.

The author, W. Richard Stevens, is one of the most reknowned experts
on TCP/IP. In addition to the two books mentioned above he is also
author and co-author of the "TCP/IP Illustrated" book series, and
author and co-author of several RFCs, Internet draft documents and
scientific papers on TCP/IP and Internet issues.

This new textbook not only covers the ‘usual’ topics, such as UDP
and TCP client/server programming, raw sockets, ICMP, broadcasting
etc., but also contains detailed information on many new topics, such
as multicasting, T/TCP, IPv6 and protocol-independent software
development.

The book is highly recommended to anyone who is serious about writing
professional TCP/IP applications. Parts of it might be too technical
and in-depth for the casual hobby programmer, though. For those people
a more basic book about TCP sockets with lots of examples (e.g. from
Sybex or Addison Wesley), without the more complex information
regarding multicasting or IPv6 might be more advisable.

TCPIP 4 / 20

For more information on the text please visit the author’s homepage:

http://www.kohala.com/~rstevens

That page also contains the source code for all example programs in
the book, plus the current errata.

1.3 TCPIP.guide/NODE_GENERAL

General

The following differences between Amiga TCP/IP programming and Unix
TCP/IP programming are important. The textbook uses the Unix
conventions, so you need to manually convert example programs to the
corresponding Amiga conventions:

* Amiga BSD sockets are, unlike Unix sockets, NOT valid level-1 file
descriptors, i.e. the level-1 file I/O functions of your C
compiler’s library CANNOT be used with sockets. Functions that are
not allowed on sockets include ‘read’, ‘write’, ‘close’, ‘ioctl’
and several others. If you are porting code from Unix, and that
code uses these functions to access sockets, then you need to use
the following replacement functions (ONLY when the program accesses
sockets, NOT when it accesses real level-1 files):

- Replace ‘read(a,b,c)’ with ‘recv(a,b,c,0)’.

- Replace ‘write(a,b,c)’ with ‘send(a,b,c,0)’.

- Replace ‘close(a)’ with ‘CloseSocket(a)’.

- Replace ‘ioctl(a,b,c)’ with ‘IoctlSocket(a,b,c)’.

* For the same reason it is NOT possible to convert a socket into a
level-2 file descriptor (fdopen()), or to use socket functions
(like select()) on level-1 file descriptors. The number spaces of
sockets and level-1 file descriptors are NOT related.

* The text makes extensive use of socket wrapper functions defined
by the author, which perform some additional error checking, as
described in section 1.4 of the text. Usually the names of the
wrapper functions are derived from the original function names, by
capitalizing the first character (e.g. the wrapper for ‘socket’ is
named ‘Socket’). One problem with this in AmigaOS is that AmigaOS
function names also start with a capital letter, and some AmigaOS
function names clash with the names of socket wrapper functions
(e.g. ‘Close’, which is already used by dos.library). One way to
avoid this problem is by adding a prefix to those wrapper function
names that cause clashes, e.g. ‘s_Read’ instead of ‘Read’,
‘s_Write’ instead of ‘Write’ and ‘s_Close’ instead of ‘Close’.
This is the method that was used to get the example programs to
compile with SAS/C.

TCPIP 5 / 20

* In Unix programs you will often find that an errno code EINTR is
ignored, i.e. that programs explicitly check for (errno==EINTR),
and in this case ‘continue’ back to the beginning of the loop, or
bypass error processing. In Unix this is correct, because EINTR
indicates that the function call was interrupted (a transient
condition). However in AmigaOS (errno==EINTR) indicates that the
user has pressed Ctrl-C. This is something you should NOT ignore in
your program, i.e. you need to remove that ‘if(errno==EINTR)
continue;’ code from any Unix programs you port. Either have your
program exit gracefully or handle this condition in some other
way, but do NOT ignore it. Users will be very unhappy if your
program does not react to Ctrl-C.

* The text makes use of several Unix-specific functions regarding
signals, e.g. alarm(), sigsetjmp() etc. These functions do not
exist in AmigaOS, so the corresponding programs have to be
rewritten.

1.4 TCPIP.guide/NODE_CHONE

Chapter 1. Introduction

1.1 Introduction
================

The text mentions IPv6. At the time of this writing no AmigaOS
protocol stack with IPv6 support exists. However current versions of
the Miami API have been prepared for future IPv6 plug-ins into Miami
and/or Miami Deluxe, and by following the guidelines in this manual it
is possible for you to write TCP/IP applications now in such a way that
they will automatically be IPv6-compatible later, once IPv6 becomes
available for AmigaOS, without recompiling the applications again.

1.2 A Simple Daytime Client
===========================

The example given in this section (and many other examples in the
book) use ‘read’ instead of ‘recv’ for socket I/O. This is not possible
in AmigaOS. Please see

General Information
for more information on this.

The indented text on page 8 mentions a function ‘inet_pton()’. This
function is NOT part of the standard AmigaOS BSD socket API. However it
IS supported by Miami and the miami.library API for Miami 3.0 and
higher. For more information on how to make use of the new functions in
Miami’s API without sacrificing compatibility to other TCP/IP protocol
stacks (e.g. AmiTCP/IP) please see the enclosed README file.

1.3 Protocol independence
=========================

The IPv6 example given in the text can be compiled with the Miami

TCPIP 6 / 20

SDK, but will not work with Miami until IPv6 support becomes available.

1.4 Error Handling: Wrapper Functions
=====================================

Please see
General Information
for more information on name clashes

with some of the wrapper functions.

1.5 A Simple Daytime Server
===========================

The function ‘snprintf’ mentioned in the indented text is not part
of the standard SAS/C runtime library, but the author’s implementation
that comes with the example programs can be used instead.

The paragraph ‘Terminate connection’ mentions the Unix ‘fork’
function to create concurrent servers. This cannot be done in AmigaOS.
Unlike processes in Unix, processes in AmigaOS do NOT share resources
(e.g. sockets), making the use of concurrent servers in AmigaOS through
separate processes much more complicated. Please read the README file
(on multiple bsdsocket openers) and see the description of
‘ObtainSocket’ and ‘ReleaseSocket’ in Socket.doc for more information
how sockets can be passed between AmigaOS processes.

1.6 Road Map to Client-Server Examples in the Text
==

Some of the examples listed here use techniques like fork() and are
thus not applicable to AmigaOS.

1.8 BSD Networking History
==========================

Amiga protocol stacks fit into this history in the following way:

* AS-225 R1 is based on 4.2BSD.

* AS-225 R2 is probably based on the same code, but there are some
indications that at least parts of the code have been upgraded to
4.3BSD Tahoe (Net/1).

* AmiTCP/IP <=4.x seems to be based partly on 4.3BSD Tahoe and
partly on 4.3BSD Reno. It still has the old routing scheme, but
already uses the new sockaddr format.

* TermiteTCP: unknown, probably <= 4.3BSD Reno.

* Miami: Very early beta versions were based on 4.4BSD-Lite (Net/3).
Version 1.0 and higher were based on 4.4BSD-Lite2. Version 2.1 and
higher are based on FreeBSD. Current versions of Miami (3.0 and
higher) are primarily based on FreeBSD 2.2.5, but also use code
from 4.4BSD-Lite2 and OpenBSD.

1.9 Test Networks and Hosts
===========================

TCPIP 7 / 20

The diagnostic programs ‘netstat’, ‘ifconfig’ and ‘ping’ are also
available for Miami. They are called ‘MiamiNetStat’, ‘MiamiIFConfig’
and ‘MiamiPing’ and located in the directory ‘Miami:’. They are used as
described in the text.

1.10 Unix Standards
===================

AmigaOS is for the most part NOT Posix-compliant. DNI/XTI is not
supported, neither is AF_LOCAL or AF_UNIX. Many of the new Posix.1.g
functions for networking are available in the API of Miami 3.0 though.

1.11 64-bit Architectures
=========================

AmigaOS is currently a 32-bit architecture, following the ILP32
model.

1.5 TCPIP.guide/NODE_CHTWO

Chapter 2. The Transport Layer: TCP and UDP

2.2 The Big Picture
===================

‘tcpdump’ is also available for Miami. The name is ‘MiamiTCPDump’.
It is based on BPF (implemented in miamibpf.library). DLPI is not
supported by Miami.

2.7 Port numbers
================

Miami currently uses the BSD model for allocation of port numbers
(see figure 2.6).

The ‘rresvport’ function mentioned in the indented text is not
currently part of the AmigaOS BSD socket API.

2.10 Standard Internet Services
===============================

Instead of a file ‘/etc/services’ Miami uses a built-in ‘Services’
database. See also section 9.9.

1.6 TCPIP.guide/NODE_CHTHREE

TCPIP 8 / 20

Chapter 3. Sockets Introduction

3.1 Introduction
================

The AmigaOS BSD socket API only supports the functions ‘inet_addr’
and ‘inet_ntoa’. The more advanced functions ‘inet_aton’, ‘inet_pton’
and ‘inet_ntop’ are supported by the Miami API though. Also see
sections 3.6 and 3.7.

3.2 Socket Address Structures
=============================

The AmigaOS BSD socket API supports the sa_len/sin_len member with
all compatible protocol stacks, including Miami. However AS-225 (using
the old ‘socket.library’ API) does NOT support this member.

The sockaddr_un structure is not supported, because it refers to the
unsupported ‘Unix’ socket domain.

3.4 Byte Ordering Functions
===========================

AmigaOS running on MC680x0 CPUs uses big-endian byte ordering, i.e.
the conversion functions (htonl() etc.) are no-ops. You should still be
careful to add those functions where required, though, or otherwise
your code will break if AmigaOS is ever ported to little-endian
machines.

3.9 readn, writen, and readline Functions
===

Note that the EINTR behavior described in the text does NOT apply to
AmigaOS. Please see

General Information
for more information on this.

3.10 isfdtype Function
======================

This function does not exist in AmigaOS, and would be useless
anyway, because the number spaces of level-1 file descriptors and
sockets are separate.

1.7 TCPIP.guide/NODE_CHFOUR

Chapter 4. Elementary Sockets

4.2 socket Function
===================

TCPIP 9 / 20

Miami does not support AF_LOCAL, AF_UNIX, AF_KEY, AF_NS, AF_ISO, or
(at the moment) AF_INET6. AF_ROUTE is only supported by Miami, not by
older protocol stacks. SOCK_SEQPACKET and SOCK_PACKET are not supported
either.

4.5 listen Function
===================

Miami currently uses a listen backlog policy similar to the one used
by SunOS 4.1.4, with one exception: For applications that specify a
backlog parameter of 5 the corresponding ‘real’ listen backlog is
configurable in Miami (MiamiSysCtl parameter ‘socket.maxqlen’). The
default is 7.

This allows ‘normal’ servers, which have been compiled with
listen(...,5) to use larger listen backlogs, controlled by the
administrator.

4.7 fork and exec Functions
===========================

This section is not applicable to AmigaOS.

4.8 Concurrent Servers
======================

This section is not directly applicable to AmigaOS. It is possible
to write concurrent servers for AmigaOS, but not using the methods
described here. To service an incoming connection in a separate process
you need to create a new process (CreateNewProcTags()), open
‘bsdsocket.library’ and ‘miami.library’ (if needed) again from that
process, and then pass the socket from the main process to the child,
using the functions ‘ReleaseSocket’ and ‘ObtainSocket’. You may NOT
share library bases or socket numbers between the main process and the
child.

4.9 close Function
==================

You need to use CloseSocket() for sockets, NOT close().

1.8 TCPIP.guide/NODE_CHFIVE

Chapter 5. TCP Client-Server Example

5.6 Normal Startup
==================

The description of the output of "ps -l" is not applicable to
AmigaOS.

5.8-5.10

TCPIP 10 / 20

========

These sections are not applicable to AmigaOS. If you spawn child
processes then you need to set up your own notification system.

5.13 SIGPIPE Signal
===================

The SIGPIPE signal does not exist in AmigaOS. If a process tries to
write to a socket after the socket has received a RST then EPIPE is
returned in errno.

5.14 Crashing of Server Host
============================

The last paragraph in this section and the discussion in section 5.15
(about how clients discover when the server has crashed) is VERY
important. The majority of Amiga networking software is broken in this
respect. Please check your software for this condition.

5.15 Shutdown of Server Host
============================

Server shutdowns in AmigaOS are usually initiated by sending a
Ctrl-C signal to all servers. Servers need to watch out for this, and
exit gracefully when receiving a Ctrl-C signal.

1.9 TCPIP.guide/NODE_CHSIX

Chapter 6: I/O Multiplexing: The select and poll Functions

**

6.2 I/O Models
==============

‘blocking I/O’, ‘nonblocking I/O’ are both possible with AmigaOS.

‘I/O multiplexing’ is also possible, but only using the function
select() (and its AmigaOS extension WaitSelect()), not using poll().

‘signal driven I/O’ is possible as well, but in a different way than
described in the text. Signal driven I/O in AmigaOS uses exec.library
signal bits and the Wait() function, not signal handlers.

‘asynchronous I/O’ is not currently possible. Mind the terminology:
in AmigaOS and BSD-Socket documentation you will often find the term
‘asynchronous socket I/O’ as a synonym for what this text describes as
‘signal driven I/O’. True ‘asynchronous I/O’ with the meaning described
in this text is not currently possible with AmigaOS.

‘signal-driven I/O’ in AmigaOS works in one of two ways:

First method:

TCPIP 11 / 20

* You specify which exec signal you want to receive for socket
events by setting SBTC_SIGIOMASK using SocketBaseTags.

* You set the FIOASYNC flag on the socket.

* Now you will receive the specified signal every time an event
occurs on the socket.

Second method:

* You specify which exec signal you want to receive for socket
events by setting SBTC_SIGEVENTMASK using SocketBaseTags.

* You use SO_EVENTMASK to define which events you want to receive
for the socket.

* Now you will receive the specified signal every time an event
occurs on the socket. Whenever you receive the signal you need to
retrieve all events by calling GetSocketEvents().

Note that the second method does not work with all versions of all
Amiga protocol stacks.

For more information please see the detailed description of all
functions in Socket.doc.

6.3 select Function
===================

The select() function can be used in AmigaOS as described, with a
few exceptions:

* Only socket descriptors can be used in the fd sets, not level-1
file descriptors.

* NEVER restart select() after (errno==EINTR). That condition
indicates that the user has hit Ctrl-C, NOT that the function
should be restarted.

* You might want to use the function WaitSelect() instead of
select(). WaitSelect() allows you to not only wait for socket
events, but also for exec signals.

The maximum number of descriptors for an fd set is defined in the
preprocessor constant FD_SETSIZE. You can change this value in the
following way:

* #define FD_SETSIZE to the value you need before including
sys/socket.h into your program.

* Then call SocketBaseTags with SBTC_DTABLESIZE and your chosen
value as the FIRST thing in your program.

6.4 str_cli Function (Revisited)
================================

The technique described in this section and in section 6.7 (using

TCPIP 12 / 20

select() for both file descriptors AND sockets) does not work in
AmigaOS.

6.8 TCP Echo Server (Revisited)
===============================

This section describes how a server can serve multiple client
connections with only a single process. This technique also works with
AmigaOS, and is often easier to implement than a server that spawns
child tasks.

6.9-6.11
========

These sections are not applicable to AmigaOS.

1.10 TCPIP.guide/NODE_CHSEVEN

Chapter 7. Socket Options

7.1 Introduction
================

The ‘fcntl’ function does not exist for sockets in AmigaOS. Instead
of ‘ioctl’ you need to use ‘IoctlSocket’ for sockets. Please see
figure 7.15 for more information.

7.2 Checking if an Option is Supported and Obtaining the Default
==

Using ‘#ifdef’ to check if an option is supported, as described in
the text, is NOT sufficient, because different protocol stacks support
different options. Instead you need to check at runtime whether an
option is supported, by examining the return code of getsockopt() or
setsockopt() (-1 and errno==ENOPROTOOPT for unsupported options).

You will find that Miami supports a much larger set of options than
most other protocol stacks. If you want your program to work with
other, older protocol stack then your program should not rely on
certain options being supported by all protocol stacks.

7.5 Generic Socket Options
==========================

Miami supports all options described in this section (including
SO_REUSEPORT), except that SO_DEBUG has no useful effect.

7.6 IPv4 Socket Options
=======================

Miami supports all options described in this section except for
IP_RECVIF.

TCPIP 13 / 20

7.7-7.8
=======

These sections are not currently applicable to any AmigaOS protocol
stack.

7.9 TCP Socket Options
======================

Miami supports all options described in this section except for
TCP_MAXRT and TCP_STDURG.

7.10 fcntl Function
===================

This section is not applicable to AmigaOS.

1.11 TCPIP.guide/NODE_CHEIGHT

Chapter 8. Elementary UDP Sockets

8.11 connect function with UDP
==============================

The DNS example given mentions the file ‘/etc/resolv.conf’ for Unix.
In Miami the corresponding configuration mechanism is the built-in ‘DNS
servers’ database.

1.12 TCPIP.guide/NODE_CHNINE

Chapter 9. Elementary Name and Address Conversions

**

9.2 Domain Name System
======================

Instead of the files ‘/etc/resolv.conf’ and ‘/etc/hosts’ Miami uses
the built-in databases ‘DNS servers’ and ‘Hosts’. Other mechanisms
(e.g. NIS) are not supported. gethostbyname() and gethostbyaddr()
automatically check all applicable tables, databases and DNS servers.

9.4 RES_USE_INET6 Resolver Option
=================================

Miami does not currently support IPv6, so this option is not
supported, even though it appears in the header files. If you want to
use it anyway, for future compatibility, then use the following calling
sequence:

TCPIP 14 / 20

if(MiamiSupportsIPV6()) {
/* save a flag in your application to remember that

IPv6 is used */
ipv6=TRUE;

MiamiResSetOptions(MiamiResGetOptions()|RES_USE_INET6);
}

For AmigaOS TCP/IP programs the resolver data (variable _res) is in
a shared library, not in a linked library, i.e. that variable and
resolver functions cannot be accessed in the way described in the text.

The other methods described (global options or environment
variables) are not supported.

9.5 gethostbyname2 Function
===========================

gethostbyname2 is not supported by the standard AmigaOS BSD-socket
API, but by the Miami API.

9.7 uname Function
==================

The uname function is not currently supported in AmigaOS.

9.9 getservbyname and getservbyport Functions
===

With Miami these two functions refer to the built-in database
‘Services’ instead of the Unix file ‘/etc/services’.

9.10 Other Networking Information
=================================

The use of the getXXXent, setXXXent and endXXXent functions is
possible with Miami, but deprecated. The keyed lookup functions (see
figure 9.9) should be used instead.

1.13 TCPIP.guide/NODE_CHTEN

Chapter 10. IPv4 and IPv6 Interoperability

**

IPv6 is not currently supported by Miami. However the comments in
this chapter will be applicable once IPv6 gets available.

1.14 TCPIP.guide/NODE_CHELEVEN

TCPIP 15 / 20

Chapter 11. Advanced Name and Address Conversions

The functions getaddrinfo, gai_strerror, freeaddrinfo and
getnameinfo described in this chapter are not supported by the standard
AmigaOS BSD-socket API, but by the Miami API.

Currently these functions only support IPv4, but they will be
transparently extended to support IPv6 once IPv6 becomes available. If
your application uses these functions correctly now then it will not
have to be changed when IPv6 becomes available later.

11.5 getaddrinfo Function: IPv6 and Unix Domain
===

Miami does not support Unix domain sockets, i.e. hostnames ‘/local’
or ‘/unix’ are not supported either.

11.14-11.15
===========

AmigaOS does not support multithreading and therefore does not need
reentrant versions of the resolver functions.

1.15 TCPIP.guide/NODE_CHTWELVE

Chapter 12. Daemon Processes and inetd Superserver

**

12.1 Introduction
=================

With Miami INetD is built in to Miami, and therefore automatically
started when Miami is started.

12.2 syslogd Daemon
===================

The syslogd Daemon is built in to Miami and always active. It is
configured in Miami’s user interface.

12.3 syslog function
====================

Miami’s syslogd is not as extensively configurable as described in
this section. If you need more control over Miami’s logging functions
then please install Petri Nordlund’s ‘Syslog’ package and enable ‘Use
syslog.library’ in Miami.

12.4 daemon_init function
=========================

This section is not applicable to AmigaOS.

TCPIP 16 / 20

12.6 daemon_inetd function
==========================

This section is not applicable to AmigaOS.

1.16 TCPIP.guide/NODE_CHTHIRTEEN

Chapter 13. Advanced I/O Functions

13.2 Socket Timeouts
====================

Method 1 (calling alarm and using SIGALRM) is not possible with
AmigaOS. Instead you would need to set up a timeout using timer.device,
and wait for the IORequest to return in WaitSelect().

13.5 recvmsg and sendmsg Functions
==================================

The flags MSG_BCAST and MSG_MCAST are currently not supported by any
AmigaOS protocol stack.

13.9 T/TCP: TCP for Transactions
================================

Miami is currently the only AmigaOS protocol stack that supports
T/TCP, and only for registered users. This means it is advisable to
perform run-time tests in your software to check if T/TCP is available.
Please see the program ‘examples/ttcptest.c’ as an example how to do
this.

1.17 TCPIP.guide/NODE_CHFIFTEEN

Chapter 15

No additional comments on this chapter.

1.18 TCPIP.guide/NODE_CHSIXTEEN

Chapter 16

16.2 ioctl function
===================

TCPIP 17 / 20

Instead of ‘ioctl’ the function ‘IoctlSocket’ has to be used.

16.3 Socket Operations
======================

‘sockatmark’ is not supported by the standard AmigaOS BSD-socket
API, but by the Miami API.

16.8 ARP Cache Operations
=========================

Miami’s ARP cache is integrated with routing tables and accessible
through AF_ROUTE sockets, not through the obsolete SIOCxARP operations.

1.19 TCPIP.guide/NODE_CHSEVENTEEN

Chapter 17. Routing Sockets

Routing sockets are only supported by Miami, not by older protocol
stacks.

17.4 sysctl Operations
======================

The ‘sysctl’ function is not supported by the standard AmigaOS
BSD-socket API, but the Miami API has the equivalent function
‘MiamiSysCtl’. The objects MiamiSysCtl operates on (and the resulting
tree structure) are slightly different from the one described in the
text. Please see the C header files for lists of all supported objects.

17.6 Interface Name and Index Functions
=======================================

The functions defined in this section are not supported by the
standard AmigaOS BSD-socket API, but by the Miami API.

1.20 TCPIP.guide/NODE_CHEIGHTEEN

Chapter 18. Broadcasting

18.2 Broadcast Addresses
========================

Commenting on the indented text: Miami converts 255.255.255.255 to
the subnet-directed broadcast address of the outgoing interface. In
the case of a multi-homed hosts (which will only be an issue with Miami
Deluxe) broadcasts are sent to the primary interface.

TCPIP 18 / 20

18.5 Race Condition
===================

The problem described in this section is specific to Unix signal
handling only, and of no concern for AmigaOS programmers.

1.21 TCPIP.guide/NODE_CHNINETEEN

Chapter 19. Multicasting

Multicasting is only supported by the registered version of Miami,
not by older protocol stacks.

1.22 TCPIP.guide/NODE_CHTWENTY

Chapter 20. Advanced UDP Sockets

No additional comments on this chapter.

1.23 TCPIP.guide/NODE_CHTWENTYONE

Chapter 21. Out-of-Band Data

21.2 TCP Out-of-Band Data
=========================

AmigaOS does not have a SIGURG flag. Out-of-band data can be
detected by using the exception fd set in select().

21.3 sockatmark Function
========================

‘sockatmark’ is not supported by the standard AmigaOS BSD-socket
API, but by the Miami API.

1.24 TCPIP.guide/NODE_CHTWENTYFOUR

TCPIP 19 / 20

Chapter 24. IP Options

No additional comments on this chapter.

1.25 TCPIP.guide/NODE_CHTWENTYFIVE

Chapter 25. Raw Sockets

25.7 An ICMP Message Daemon
===========================

This daemon would have to be rewritten to be suitable for AmigaOS,
because it uses Unix domain sockets, which are not available in AmigaOS.

1.26 TCPIP.guide/NODE_CHTWENTYSIX

Chapter 26. Datalink Access

26.2 BPF: BSD Packet Filter
===========================

Miami supports BPF (through miamibpf.library, documented
separately), but only for reading, not to write packets to the datalink
layer. Other, older protocol stacks do not support BPF.

26.3 DLPI: Data Link Provider Interface
=======================================

DLPI is not supported by any AmigaOS protocol stack.

26.4 Linux: SOCK_PACKET
=======================

SOCK_PACKET is not supported by any AmigaOS protocol stack.

26.5 libpcap: Packet Capture Library
====================================

Miami supports libpcap (through miamipcap.library, documented
separately). Miami’s libpcap implementation is built on top of BPF.
Other, older protocol stacks do not support libpcap.

26.6 Examining the UDP Checksum Field
=====================================

The very dubious hack described in this section does not work with

TCPIP 20 / 20

Miami, because Miami’s BPF implementation does not support the sending
of packets. Applications would need to use either UDP sockets or raw
sockets, or directly access the underlying SANA-II device (for
non-serial connections).

1.27 TCPIP.guide/NODE_CHTWENTYSEVEN

Chapter 27. Client-Server Design Alternatives

27.2 TCP Client Alternatives
============================

The Fork()-based client implementation described in this section and
in section 27.3 cannot be used in AmigaOS unless very extensive
modifications are made.

27.5-27.12
==========

All servers described in these sections use fork() and cannot be
used in AmigaOS unless very extensive modifications are made.

	TCPIP
	TCPIP.guide
	TCPIP.guide/NODE_TEXTBOOK
	TCPIP.guide/NODE_GENERAL
	TCPIP.guide/NODE_CHONE
	TCPIP.guide/NODE_CHTWO
	TCPIP.guide/NODE_CHTHREE
	TCPIP.guide/NODE_CHFOUR
	TCPIP.guide/NODE_CHFIVE
	TCPIP.guide/NODE_CHSIX
	TCPIP.guide/NODE_CHSEVEN
	TCPIP.guide/NODE_CHEIGHT
	TCPIP.guide/NODE_CHNINE
	TCPIP.guide/NODE_CHTEN
	TCPIP.guide/NODE_CHELEVEN
	TCPIP.guide/NODE_CHTWELVE
	TCPIP.guide/NODE_CHTHIRTEEN
	TCPIP.guide/NODE_CHFIFTEEN
	TCPIP.guide/NODE_CHSIXTEEN
	TCPIP.guide/NODE_CHSEVENTEEN
	TCPIP.guide/NODE_CHEIGHTEEN
	TCPIP.guide/NODE_CHNINETEEN
	TCPIP.guide/NODE_CHTWENTY
	TCPIP.guide/NODE_CHTWENTYONE
	TCPIP.guide/NODE_CHTWENTYFOUR
	TCPIP.guide/NODE_CHTWENTYFIVE
	TCPIP.guide/NODE_CHTWENTYSIX
	TCPIP.guide/NODE_CHTWENTYSEVEN

